
Realising the Benefits of Formal Methods
Anthony Hall

Independent Consultant, UK
email: anthony@anthonyhall.org

I. INTRODUCTION

What are the real benefits of formal methods and Why should
we care about them? When and Where should we expect to use
them, and Who should be involved? I suggest some answers
to those questions and describe one approach, Correctness by
Construction [1], that has achieved practical success on several
real industrial developments. Based on this I propose some
challenges for formal methods research.

II. SOME QUESTIONS ABOUT FORMAL METHODS

What have formal methods ever done for us?

Formal methods consist of writing formal descriptions, ana-
lyzing those descriptions and in some cases producing new
descriptions —for example refinements— from them. In what
way is this a useful activity?

First, experience shows that the very act of writing the
formal description is of benefit: it forces the writer to ask
all sorts of questions that would otherwise be postponed until
coding. Of course, that’s no help if the problem is so simple
that one can write the code straight away, but in the vast
majority of systems the code is far too big and detailed to be
a useful description of the system for any human purpose. A
formal specification, on the other hand, is a description that is
abstract, precise and in some senses complete. The abstraction
allows a human reader to understand the big picture; the
precision forces ambiguities to be questioned and removed;
and the completeness means that all aspects of behaviour —
for example error cases— are described and understood.

Second, the formality of the description allows us to carry
out rigorous analysis. By looking at a single description
one can determine useful properties such as consistency or
deadlock-freedom. By writing different descriptions from dif-
ferent points of view one can determine important properties
such as satisfaction of high level requirements or correctness
of a proposed design.

There are, however, stronger claims sometimes made for
formal methods that are not, in my opinion, justified. The
whole notion of proof as qualitatively superior to other analysis
methods seems to me wrong: proof is no more a guarantee
of correctness than testing, and in many cases far less of one.
Furthermore, formal methods are descriptive and analytic: they
are not creative. There is no such thing as a formal design
process, only formal ways of describing and analyzing designs.
So we must combine formal methods with other approaches
if we actually want to build a real system.

Why bother?

There sometimes seems to be a belief that formal methods
are somehow morally better than other approaches to software
development, and that they can lead to the holy grail of
zero defect software. This is nonsense, and the fact that
it’s so obviously untrue is part of the reason for the strong
backlash against formal methods. What is true, however, is
that formal methods contribute to demonstrably cost-effective
development of software with very low defect rates. It is
economically perverse to try to develop such software without
using them. Figure 1 shows the defect rates achieved by
organisations at different capability levels together with the
much better defect rates achieved by using Correctness by
Construction [1], a formal-methods based process described
later in this paper.

Average Defect Density of Delivered Software

0
1
2
3
4
5
6
7
8

C MM

Level 1

(7 .50)

C M M

Leve l 2

(6 .24)

C MM

Leve l 3

(4 .73)

C M M

Leve l 4

(2 .29)

C MM

Leve l 5

(1 .05)

P raxis

(M GK C ,

0 .04)

CMM data from Jones, Capers. Software Assessments,

Benchmarks, and Best Practices. Reading, MA: Addison-

Wesley, 2000

D
ef

ec
ts

/K
L

O
C

Fig. 1. Evidence for the achievement of low defect rates.

The reason that, contrary to popular belief, formal methods
actually save money is illustrated in Figure 2. This shows the
cost of fixing a requirements error —the most common kind—
depending on when it is discovered. Since formal methods help
us discover errors early in the lifecycle, they actually reduce
the overall cost of the project.

0

5 0

10 0

15 0

20 0

Requirements Des ign Cod e Unit Test Acceptance

Test

Maint enance

Fig. 2. Cost of correcting a requirements defect according to the stage at
which it is discovered.

Furthermore, formal methods provide, for free, the kind of
evidence that is needed in heavily regulated industries such
as aviation. They demonstrate responsible engineering and
give solid reasons for trust in the product. As more and
more industries demand such trust, formal methods become
increasingly attractive.

In trying to realise the benefits, therefore, we should be
looking at cost-effective methods that address the major risks
and that provide tangible evidence of trustworthiness. That is
not the same as looking for perfection or proving every single
piece of code. It does mean using formality where it adds value
and exploiting the synergy between formal methods and other
activities. For example, if you have a formal specification you
can systematically derive effective test cases directly from the
specification [2].

When do formal methods bring benefit?

It is well known that the early activities in the lifecycle
are the most important. According to the 1995 Standish
Chaos report [3], half of all project failures were because of
requirements problems. It follows that the most effective use of
formal methods is at these early stages: requirements analysis,
specification, high-level design. For example it is effective to
write a specification formally rather than to write an informal
specification then translate it. It is effective to analyse the
formal specification as early as possible to detect inconsis-
tency and incompleteness. Similarly, defining an architecture
formally, for example as a set of CSP processes [4], means
that you can check early on that it satisfies key requirements
such as security.

As well as concentrating on the early lifecycle, formal
methods need to be used from the start of each activity, not as
a check at the end. We should concentrate, I believe, on correct
construction rather than post-hoc analysis. Lots of experience
with analysis tools tells us that it is far easier and more

effective to demonstrate the correctness of a well constructed
program than to analyse a poorly constructed one to find the
numerous flaws that it contains. However, there is a real human
problem in persuading people to think carefully rather than
adopting the classic hack and test approach to programming.

Where are they best used?

Formal methods traditionally live in a ghetto where they are
applied to critical parts of critical systems. While I don’t
believe that they will ever be widely applied to fast-moving
software such as web pages where the occasional failure is
tolerated or even expected, there is an increasing amount of
software where failure is becoming unacceptable and costly,
and we need to extend the reach of formal methods to a wide
range of systems such as banks, cars, telecommunications and
domestic appliances.

Within a project, formal methods can be used to a greater or
lesser extent. One approach is to use them in a highly focussed
way on critical parts of the project. For example one can give a
formal specification of just the critical requirements, or specify
and model-check critical algorithms. Another approach is to
use formal methods to support the V&V process, for example
by using a formal specification as a test oracle, without requir-
ing the developers to use them. The most ambitious approach,
and the one that yields the most benefit, is to integrate them
into the mainstream development process. This does not mean
that every single deliverable is completely formal. It does mean
that descriptions are formal wherever that brings a benefit, and
that the level of formality is chosen to suit the particular area.
It means that analysis is done wherever the benefit, in terms
of avoided risk, outweighs the cost. It means that the formal
specification is the basis for both developing and testing. This
approach does require that the formal notations are strongly
integrated with the other notations used in the project. For
example a formal state model might be closely linked with a
more approachable UML Class Diagram.

Who uses formal methods?

There are two ways of answering this question, with different
costs and benefits. One way is to have a small specialist
team carrying out the formal work. This is relatively easy to
introduce and concentrates the use of what is at the moment
a scarce resouce, that is skilled formal methods practitioners.
However, the benefits are correspondingly limited since the
team can only concentrate on small areas, and there is a serious
danger of divergence between the formal deliverables and the
mainstream project.

The more ambitious approach, and the one that yields bigger
benefits, is to integrate formal methods into the whole project.
More people need to be trained to use the methods: for
example testers need to be able to read formal specifications.
The benefits come because now formal and informal methods
can be integrated, the whole project benefits from the formality
and it is far easier to ensure that formal specification, design,
code and tests are all kept in step.

III. ONE ANSWER: CORRECTNESS BY CONSTRUCTION

Correctness by Construction [1] is one point in the spectrum
of possible answers to the preceding questions. It exploits the
benefits of abstraction to achieve clarity and completeness
in the specification. It uses formality to improve both the
development process and the assurance activities. It uses
formality from the earliest possible stage and throughout the
lifecycle, and it involves the whole team in an integrated way.

Correctness by Construction has been developed over many
years and is continuing to drive down defect rates as the
process is refined. Figure 3 shows the defect rates of projects
over a 10 year period.

0.75

0.22

0.04
0.087

0

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1992 1997 1999 2001 2003

Defec ts pe r

K LO C

Fig. 3. Progress in Reducing Defect Rates.

Correctness by Construction embodies many of the principles
of Lean Engineering. Rather than having an inflexible set of
procedures, the process for any given project is designed to
address the major risks particular to that project. Nothing is
ever done unless it adds value to the project. There is a tight
feedback loop making corrections to the product —and indeed
the process itself— at all stages. The approach can be summed
up in two principles:
• Avoid introducing errors as far as possible.
• Remove those errors that are introduced as soon as

possible.
Correctness by Construction achieves these by using the most
rigorous notation possible at each stage and by carrying out
the most rigorous analysis that is feasible on each artefact.

For example, the system specification is written in a formal
notation such as Z. The meaning is unambiguous, and all side
effects are clearly visible. One particular benefit is that it forces
you to consider all the cases, including error behaviour: this
is an aspect often omitted from informal descriptions.

A key principle in C-by-C is to say things only once.
For example the Z specification is an abstract, black-box
description of the system’s behaviour. There is also a user
interface specification: this adds syntactic and lexical detail,

but it does not repeat the description in the formal specifica-
tion. Similarly the system architcture defines the structure of
modules and processes but does not repeat or expand on the
behavioural description in the specificaiton — the descriptions
are complementary. Before coding, you can design the detailed
module structure and data flow relations in a formally-defined
language like SPARK [5].

A final, indirect, but very important benefit of formality
is that it strongly encourages simplicity. Because a formal
specification needs to be complete, it does not allow you to
hide complexity in an informal summary. If it is complicated
to specify it will be complicated to build, so effort spent in
simplifying the specification is well worthwhile.

Each of the artefacts can be checked, helping to eliminate
errors before they get any further. The formal specification
can at least be typechecked; where justified, it can be proved
consistent and (to some extent) complete, and you can show,
perhaps by proof or by model checking, that it satisfies key
requirements. It may also be possible to animate it to help
validate, with the stakeholders, that it captures the intended
behaviour. A user interface specification can be prototyped
and critiqued by the users. Process designs can be analysed,
for example to show that they are free from deadlocks. SPARK
annotations can be analysed to show the absence of dataflow
errors — and thus, maybe, the satisfaction of critical safety or
security properties. Even better, you can prove the complete
absence of run-time errors in your code.

These methods, taken together, are both effective and eco-
nomical. It has been shown in [6], for example, that carrying
out proofs of correctness can actually find more errors, more
economically, than traditional unit testing. In addition, C-by-
C involves continuous process improvement. We measure the
defect introduction and removal rate, and in particular how
soon we can remove the defects that are introduced. Figure 4 is
a diagram of this information for a recent project [7]. It shows,
for example, that 57 errors introduced in the specification
were detected and removed at the architecture stage. The aim
of process improvement is to reduce the numbers of errors
overall and to move them as far to the left of this diagram as
possible. Where errors are anomalous —for example the one
specification error that survived into operation— we carry out
root cause analysis to determine what went wrong and improve
the process to try and eliminate such errors in future.

This discussion of C-by-C might make it seem that it
is a traditional waterfall lifecycle. On the contrary, it is
highly risk-driven rather than document-driven, and it supports
concurrent and iterative development. For example, because
the architecture and the formal specification are talking about
different aspects of the system, they can be written to a large
extent in parallel. Once the architecture and the main structure
of the specification is in place, there can be many incremental
and overlapping build cycles, each adding increments of
functionality to the system. This shortens the overall timescale,
offers early delivery of partial functionality and reduces project
risk by getting early visibility of a working system.

Specifica tion 0

57
14

38
23

4
1

Architec tu re

D es ign

C ode

D eve loper Test

C ustom er Test

O peration

3

8
4

1

0
0

0

9
18

3
0

0

117
115

60
0

00
0

0

Fig. 4. Defects by Point of Introduction vs. Point of Removal.

IV. HOW CAN WE REALISE THE BENEFITS?

C-by-C has several successful projects under its belt, and has
been proved to deliver outstandingly low defect rates. Praxis
routinely offers a warranty with software developed in this
way. At the same time, the cost is no more than that of a
conventional, lower quality development.

Nevertheless, there is a long way to go before it or anything
like it is a mainstream process. There are many challenges
for formal methods researchers and tool developers if they
are going to support a practical process on a large scale in
industry. In this section I suggest some problems that need to
be addressed.

Problems of Specification

The key problem for formal specifications is that they are not
yet accessible to the stakeholders who need to read them.
We need to retain the mathematical rigour but make the
vocabulary and even the syntax much more domain dependent
so that specifications can be read not just by trained software
engineers but by domain experts in automobile engineering, air
traffic control or whatever the application is. From a technical
point of view, we need languages that are expressive (like,
say, Z) but at the same time we want to be able to animate
specifications and carry out proofs easily or even automati-
cally. There is an intrinsic conflict between expressiveness and
executability, and we need far more powerful tools to allow
us to do this.

All real projects need large specifications and all large
formal specifications are unacceptably cluttered. We need far
better modularity mechanisms, but there are, again, difficul-
ties of principle. For example, a key modularity technique
in programs is information hiding, but this is completely
inappropriate for specifications since the specification of a
module is precisely what its user must know about it. We
need some more powerful modularity concept of somehow
hiding information until it is needed. We also need to solve the
framing problem —specifying what does not change, without
cluttering the specification with uninteresting predicates.

Although the abstraction necessary for a formal specification
removes a lot of implementation information, nevertheless the
precision of a formal specification necessarily seems to add
detail. This too makes the specification large and unwieldy.
Methods of presenting specifications by incremental addition
of detail would be very valuable.

Formal notations cannot stand alone. They must be inte-
grated with diagrams, English text and indeed with each other.
This raises problems both of principle and of pragmatics. For
example we need to be able to compose finite state machines
with more general logics, sequential operation specifications
with process algebras and abstract specifications with more
concrete user or system interface specifications. We need
to minimise the number of different documents, eliminate
duplication of information between documents and be able to
present common information in different views. Current formal
methods tools don’t allow this sort of integration.

Problems of Design

There is within the formal methods world a very rigorous
notion of refinement. Unfortunately this notion bears very little
resemblance to the real process of design. First, it supposes
that the concrete implementation is a perfect reflection of the
specification. In fact, however, all realistic specifications are
to a greater or lesser extent idealisations: so the relation we
need is retrenchment [8], not refinement [9].

Second, it supposes that the structure of a system is
essentially unchanged —it has, in particular, the same set
of operations— by the design process. In a real project,
however, there is a huge difference between the structure of the
specification and the structure of the implementation. A single
‘operation’ at the specification level may be implemented by
a distributed collection of heterogeneous machines running, in
parallel, COTS products with poorly defined interfaces, whose
operations bear no relation to the user’s concepts. There are
no practical refinement methods that can deal with this sort of
situation yet.

Problems of Verification

While it is true that the mere act of writing a specification
is a powerful tool for exposing errors, formal methods seem
to offer much more: the possibility of rigorous analysis.
In practice, complete analysis is simply infeasible on large
specifications. Manual or tool-supported proof is inaccessible
to all but a small priesthood. The other great white hope,
model checking, is crippled by the state explosion problem.
Huge progress is needed if these techniques are to be routinely
applied.

On a more practical level, it is possible to derive good test
cases from formal specifications, as noted earlier. The theory
is well understood but there is a disappointing dearth of tools
that will put this theory into practice, so test case generation
remains a tedious manual process.

It is particularly disappointing that much effort going into
validation is being devoted to the chimerical notion of ‘proving
programs correct’. Not only is this an impossible goal, it

is addressing the least important part of the whole process
— however successful this effort is, it will make negligible
difference to the quality of delivered software, which is
determined far earlier in the process.

V. CONCLUSION

I am an enthusiast for formal methods, and I can show
that they offer clear benefits. However, these benefits are
not automatic — they depend on intelligent application of
methods where they can add value. There is no single best
way of using formal methods, and no single best method.
Furthermore, formal methods are only part of the solution
to the software development problem and success depends
crucially on integrating them into a larger process.

We do have excellent results from their intelligent use in
a good process. We have systems that have few defects, that
satisfy their users and meet the requirements of regulatory
bodies.

There are, however, big challenges for researchers in making
methods practical. Research needs to be informed by an
understanding of what the real benefits are and in particular
by where formal methods are best applied. Pragmatic issues of
accessibility and integration are just as important as theoretical
issues.

For practising engineers, though, there is a positive message:
it is demonstrably possible to succeed with formal methods
now.

Acknowledgment: The material in this paper has been adapted
from an earlier version that appeared in Formal Methods
and Software Engineering, Lecture Notes in Computer Sci-
ence Vol. 3785, Lau and Banach (eds.), Springer, Berlin.
The publisher’s permission to reuse the material is gratefully
acknowledged.

REFERENCES

[1] Information about Correctness by Construction can be obtained from
Praxis High Integrity Systems. http://www.praxis-his.com.

[2] J. Dick and A. Faivre, “Automating the Generation and Sequencing of
Test Cases from Model-Based Specifications,” LNCS, vol. 670, pp. 268–
284, 1993, Springer.

[3] Standish Group, 1995, The Standish Group Chaos Report.
http://www.projectsmart.co.uk/docs/chaos_report
.pdf.

[4] C. Hoare, Communicating Sequential Processes. Prentice-Hall, 1985.
[5] J. Barnes, High Integrity Software: The SPARK Approach to Safety and

Security. Addison-Wesley, 2003.
[6] S. King, J. Hammond, R. Chapman, and A. Pryor, “Is Proof more Cost-

Effective than Testing?” IEEE Transactions on Software Engineering,
vol. 26, pp. 675–686, 2000.

[7] A. Hall and C. R., “Correctness by Construction: Developing a Commer-
cial Secure System,” IEEE Software, vol. 19, pp. 18–25, 2002.

[8] See the Retrenchment Homepage.
http://www.cs.man.ac.uk/retrenchment.

[9] W.-P. de Roever and K. Engelhardt, Data Refinement: Model-Oriented
Proof Methods and their Comparison. Cambridge University Press,
1998.

